High-throughput phagocytosis assay utilizing a pH-sensitive fluorescent dye.

نویسندگان

  • Anton Beletskii
  • Michael Cooper
  • Priya Sriraman
  • Camelia Chiriac
  • Lihong Zhao
  • Stewart Abbot
  • Liming Yu
چکیده

We describe a development of a novel high-throughput phagocytosis assay based on a pH-sensitive cyanine dye, CypHer5E, which is maximally fluorescent in an acidic environment. This dye is ideally suited for the study of phagocytosis because of the acidic conditions generated in the intracellular phagocytic vesicles after particle uptake. Use of CypHer5E-labeled particles results in greatly reduced background from noninternalized particles and makes the assay more robust. Additionally, CypHer5E-labeled particles are resistant to fluorescence quenching observed in the aggressive and acidic environment of the phagosome with traditional dyes. The CypHer5E-based assay has been shown to work reliably in a variety of cell types, including primary human monocytes, primary human dendritic cells, primary human endothelial cells, human monocytic THP-1 cell line, and human/mouse hybrid macrophage cell line WBC264-9C. Inhibition of CypHer5E bead uptake by cytochalasin D was studied, and the 50% inhibition concentration (IC50) was determined. The assay was performed in 96- and 384-well formats, and it is appropriate for high-throughput cellular screening of processes and compounds affecting phagocytosis. The CypHer5E phagocytosis assay is superior to existing protocols because it allows easy distinction of true phagocytosis from particle adherence and can be used in microscopy-based measurement of phagocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH-Insensitive FRET voltage dyes.

Many high-throughput ion channel assays require the use of voltage-sensitive dyes to detect channel activity in the presence of test compounds. Dye systems employing Förster resonance energy transfer (FRET) between 2 membrane-bound dyes are advantageous in combining high sensitivity, relatively fast response, and ratiometric output. The most widely used FRET voltage dye system employs a coumari...

متن کامل

Determination of Active Phagocytosis of Unopsonized Porphyromonas gingivalis by Macrophages and Neutrophils Using the pH-Sensitive Fluorescent Dye pHrodo.

Phagocytosis of pathogens is an important component of the innate immune system that is responsible for the removal and degradation of bacteria as well as their presentation via the major histocompatibility complexes to the adaptive immune system. The periodontal pathogen Porphyromonas gingivalis exhibits strain heterogeneity, which may affect a phagocyte's ability to recognize and phagocytose ...

متن کامل

Ratiometric fluorescent pH-sensitive polymers for high-throughput monitoring of extracellular pH.

Extracellular pH has a strong effect on cell metabolism and growth. Precisely detecting extracellular pH with high throughput is critical for cell metabolism research and fermentation applications. In this research, a series of ratiometric fluorescent pH sensitive polymers are developed and the ps-pH-neutral is characterized as the best one for exculsive detection of extracellular pH. Poly(N-(2...

متن کامل

CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive ...

متن کامل

High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities

Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioTechniques

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2005